9. Синаптические контакты нервных клеток

Каждый нейрон способен воспринимать и передавать информацию. Он осуществляет это в специальных участках мембраны (см. рис. I-12). От тела нейрона обычно отходят одиночные аксоны, по которым нейрон передаёт потенциалы действия или градуальные сигналы. Кроме них, нейрон образует древовидные дендриты, которые являются основной зоной получения входящих сигналов. Однако и по дендритам нейрон может передавать сигналы другим клеткам. Как входящие, так и передаваемые нейроном сигналы проходят по специализированным участкам клеточной мембраны — синапсам. Количество синапсов существенно варьирует как у отдельных нейронов, так и у разных видов. Обычно синапсов бывает не менее 5000, а максимальное количество контактов может превышать 100 000. Синапсы различают по строению, типу передачи сигналов, используемому медиатору и физиологическому действию. В самом общем виде выделяют электрические и химические синапсы.

Электрические синапсы считаются наиболее простыми и несущими линейную информацию. Они позволяют клеткам непосредственно влиять друг на друга без участия посредников или специальных механизмов. Передача сигнала происходит просто через щелевой контакт — специальное место в мембране (см. рис. I- 12). В этой зоне белковые молекулы образуют специальные цилиндры, пересекающие межклеточное пространство и позволяющие сигналу переходить от клетки к клетке. Передача сигнала осуществляется очень быстро, но иногда только в одном направлении. Эти сигналы эффективны для согласования однозначных действий эффекторных органов и высокоскоростной работы нервной сети, которая начинает функционировать, как одна гигантская клетка.

Химические синапсы имеют намного более сложную природу. Они проигрывают электрическим синапсам в скорости, но выигрывают в информационном содержании. При прохождении через химический синапс сигнал, как правило, изменяется. Это свойство заложено в самом устройстве синапса. Часть синапса, принадлежащая передающей клетке, выглядит, как луковичное вздутие мембраны. Оно может находиться в любом месте клетки. Однако чаще всего химические синапсы образуются между окончаниями волокон. В синапс передающей клетки поступают секреторные гранулы, транспортирующиеся из тела клетки. Они содержат синтезированные нейромедиаторы или нейромодуляторы. Секреторные гранулы собираются в концевой части луковичного расширения и скапливаются у пресинаптической мембраны (см. рис. I-12). Снаружи от синаптической мембраны расположена синаптическая щель, изолированная от внешней среды, а за ней — постсинаптическая мембрана воспринимающей сигнал клетки. При достижении электрической перезарядки мембраны уровня химического синапса происходит освобождение содержимого мембранных пузырьков передающей клетки в синаптическую щель. Пузырьки сливаются с пресинаптической мембраной, а их содержимое взаимодействует с белковыми рецепторными молекулами постсинаптической мембраны воспринимающей клетки. Начинается активизация молекулы-рецептора, которая несколько миллисекунд действует, как селективный ионный канал.

Далее события могут развиваться по-разному. Могут активизироваться вторичные посредники внутри воспринимающей клетки или просто открываться определённые ионные каналы. Самое главное, что сигнал изменяется. Он может усиливаться в десятки раз или, наоборот, затормаживаться. Ответ клетки, воспринимающей сигнал, состоит в деполяризации или гиперполяризации участка постсинаптической мембраны. Если используемые в синапсах медиаторы вызывают деполяризацию постсинаптической мембраны, то возникает возбуждающий постсинаптический потенциал, и клетка генерирует изменённый потенциал действия. При гиперполяризации (приводящей к удержанию мембранного потенциала на уровне покоя или немного увеличивающей разницу мембранных потенциалов) происходит подавление деполяризации постсинаптической мембраны. Отсутствие деполяризации мембраны по существу сходно с градуальным сигналом и тормозит передачу нервных импульсов. Такие потенциалы называют тормозными постсинаптическими потенциалами, а синапсы — тормозными.

При синаптической передаче огромную роль играют состояние клетки и используемые медиаторы. В синаптических пузырьках может находиться не один медиатор, а несколько. Они могут одновременно оказывать альтернативное действие на постсинаптическую мембрану. Этим достигается тончайшая модуляция информации, передаваемой от клетки к клетке. Надо отметить, что в одной клетке может одновременно сосуществовать множество модификаций синаптических каналов химической природы. Учитывая общее количество медиаторов и модуляторов, используемых в контактах, можно сказать, что на уровне передачи сигнала мы сталкиваемся с почти неисчерпаемым разнообразием индивидуализации сигналов, проходящих через химический синапс нервной клетки.

Таким образом, взаимодействия между нервными клетками регулируются несколькими процессами одновременно. В самом общем виде это выглядит следующим образом. Огромное влияние оказывает общий метаболизм организма. Очень значимы состав и количество пищи, обмен кислорода и водно-солевой баланс. Изменение любого из этих компонентов приводит к радикальному изменению поведения. Одновременно на весь организм влияют инертные и плохо контролируемые нейрогормональные процессы. Повышение гормональной активности, вызванное самой нервной системой, подчиняет себе её работу. Это генерализованное и инертное воздействие на нервную систему приводит к изменению поведения. На таком фоне происходят многообразные электрохимические взаимодействия между нейронами и органами- мишенями. При этом каждая клетка обладает тысячами модифицированных контактов, переносящих постоянно изменяющуюся
информацию о внешнем мире, индивидуальном опыте или врождённойпрограмме поведения. Понятно, что такие процессы должны быть хоть как-то организованы во времени и пространстве, разделены по самым общим
функциям и дифференцированы по источникам сигналов. Результатом такого пространственного разделения нейронов «по интересам» и стала структурная организация нервной системы.
                                                         

   Уровни организации нервной ткани
Существует традиционное представление, что нервная система сложная или очень сложная. Однако сложная нервная система не столь недоступна для изучения, поскольку в её основе лежат те же принципы, что и в основе
простой. Элементарным звеном нервной системы является нейрон, о котором уже говорилось. Нейрон
это специализированная клетка, которая способна получать, перерабатывать, хранить и передавать информацию. Однако нейрон, «вырванный» из своего окружения, не способен управлять поведением.
Для создания хоть какого-нибудь поведения, отличающегося от физиологических реакций клеток растений, необходимо некоторое количество нейронов. Исследования простых нервных систем у круглых
червей показали, что минимальная нервная система состоит из 30-100 нейронов. От такой сети уже можно ожидать реакций, напоминающих поведение более сложно организованных животных. Важно отметить, что
даже при равном числе клеток существенные отличия в поведении возникают при особенностях морфологической компоновки нервной системы. Нейронам небезразлично, как они «организованы» и где «лежат» в организме. От этого зависит, как будет обрабатываться информация и
насколько эффективно будет адаптироваться организм к изменяющимся условиям среды.

С.В.Савельев. Происхождение мозга. Предисловие
Глава I. Принципы работы и организации мозга
2. Тропизмы и таксисы простейших
3. Функциональная организация нервной системы
4 .Отношение массы мозга и тела.
5. Энергетические расходы нервной систем
6. Потребление мозгом кислорода
7. Гематоэнцефалический барьер.
8. Заряды мембраны нервных клеток
9. Синаптические контакты нервных клеток
10. Типы объединения нервных клеток
11. Нервная система беспозвоночных
12. Нервная система позвоночных
Органы чувств и эффекторные системы
13.Рецепторы и органы чувств
14. Эффекторные системы
Память и забывание
15. Механизмы памяти
16. Морфологические принципы памяти
17. Признаки мышления
18. Биологические проблемы мышления
Глава II. Возникновение нервных клеток и мозга
19.Происхождение нейронов и пронейрональной сети
20. Нервная система с радиальной симметрией
21. Билатеральная нервная система
22. Нервная система членистоногих
23. Нервная система моллюсков
24. Эволюция ганглиозной нервной системы
Нервная система хордовых
25. Теории происхождения хордовых
26. Происхождение нервной системы хордовых
27. Мозг первичноводных позвоночных
28. Возникновение отделов головного мозга
29. Формирование мозга позвоночных
30. Особенности строения нервной системы
31. Проблемы выхода амфибий на сушу
32. Появление конечностей
33. Выход амфибий на сушу
Глава III. Становление мозга амниот
35. Многообразие низших амниот
36. Общий план строения нервной системы рептилий
37. Ассоциативный центр мозга рептилий
38. Условия возникновения мозга рептилий
39. Происхождение неокортекса
40. Адаптивная радиация архаичных рептилий
41. Биологическое разнообразие птиц
42. Морфологические особенности строения птиц
43. Нервная система и органы чувств птиц
44. Условия возникновения мозга птиц
45. Адаптивная радиация птиц
46. Обзор классификации млекопитающих
47. Особенности нервной системы млекопитающих
48. Органы чувств млекопитающих
49. Возникновение мозга млекопитающих
Теория переходных сред
Список литературы