49. Возникновение мозга млекопитающих

Небольшие рептилийные предки млекопитающих вышли из древесных завалов карбона с развитым обонянием, вестибулярным аппаратом, неважным зрением и ассоциативными центрами в среднем мозге. Эти существа начали загадочный эволюционный путь, который не отмечен внятными палеонтологическими следами на протяжении почти 60 млн лет.

Только в позднем триасе появляются триконодонты (Megazostrodon), которых можно считать древними, но вполне сложившимися млекопитающими. За несколько десятков миллионов лет произошли события, приведшие к формированию совершенной ассоциативной системы переднего мозга, теплокровности, плацентарному развитию и кормлению детёнышей молоком (Kemp, 1982; Tyndale-Biscoe, Rentree, 1987).
Попробуем оценить изменения нервной системы, предварившие появление триконодонтов. Карбоновые предки млекопитающих обладали набором качеств, свойственных большинству рептилий того периода. Для того чтобы стать млекопитающими, им надо было оказаться в такой среде, где их морфофункциональные особенности дали бы максимальные биологические преимущества.
Большинство современных млекопитающих обладают развитым обонянием. Оно вторично утрачено у зубатых китов и относительно мало используется хоботными, летучими мышами и приматами. В остальных случаях млекопитающие широко используют как основной орган обоняния, так и вомероназальную систему. Для наиболее примитивных млекопитающих обоняние играет ведущую роль, а представительство хеморецепторных центров в переднем мозге может превышать все остальные структуры вместе взятые (см. рис. III-19, а). Очевидно, что на первых этапах эволюции млекопитающих обоняние играло основную роль.

Это послужило причиной преимущественного развития полушарий переднего мозга. Следствием развития обонятельной системы стали переднемозговые полушария, которые доминируют над остальными отделами головного мозга. Объём парных полушарий млекопитающих всегда больше объёма других структур нервной системы, какой бы специализацией ни обладал конкретный вид (см. рис. III-18; III-19; III-21; III-25).
Развитие обоняния и переднего мозга стало первым крупным неврологическим событием в истории этой группы. Можно допустить, что предки млекопитающих использовали обоняние в качестве ведущей системы афферентации. В каких условиях это могло произойти? Очевидная ситуация — ночная активность архаичных млекопитающих, но для ночной охоты можно успешно применять слух, зрение, осязание и терморецепторы. Млекопитающие предпочли использовать обоняние, хотя остальные органы чувств не подверглись существенной редукции.
На заре эволюции млекопитающих строение переднего мозга было сходно со строением мозга современных лиссэнцефальных представителей грызунов и зайцеобразных (см. рис. III-18, б; III-19, а, б; III-24, а).

Архаичные млекопитающие занимались поиском пищи, половых партнёров и ориентировались в пространстве при помощи обоняния. С этой точкой зрения согласно большинство авторов, занимавшихся проблемами их эволюции (UIinski, 1986). На этом этапе эволюции рептилийные предки млекопитающих были лишены возможности использовать другие органы чувств с той же эффективностью, как обоняние. По- видимому, они обитали в темноте нижних ярусов карбоновых завалов, где обоняние было наиболее эффективным дистантным рецептором. Кроме обоняния, там можно было также использовать слух и тактильную чувствительность. Зрительная система и цветовое зрение были практически бесполезны и постепенно утратили свои исходные характеристики.

В этом состоянии архаичные млекопитающие пребывали долго. Времени хватило для создания интегративных связей между половыми корковыми центрами вомероназальной системы и сенсомоторными системами других отделов мозга. На базе скромного коркового зачатка рептилийной системы полового обоняния возник новый центр принятия решений. В него явно первоначально входили вомероназальные, моторные и вкусовые центры.
Слуховая система на первом этапе эволюции млекопитающих совершенствовалась за счёт задних бугорков четверохолмия. Они у млекопитающих развиты больше, чем у рептилий и птиц (см. рис. III-22, г).

Таким образом, к моменту выхода из карбоновых лабиринтов потенциальный предок млекопитающих обладал развитым обонянием, слуховыми бугорками в крыше среднего мозга и зачатком коры, интегрировавшим обонятельные половые, моторные и вкусовые центры (рис. III-27, а, б).
Возникает вполне естественный вопрос о дальнейшей судьбе этих существ. Обычно предполагается, что мелкие предки млекопитающих по ночам вынюхивали свою добычу в подстилке лесов, а днём скрывались в норах или среди корней деревьев. Это вполне справедливое предположение, хотя объясняет только возможность развития обоняния.

Однако при таком образе жизни никаких дополнительных стимулов для развития неокортекса и тем более полушарий мозжечка обнаружить невозможно. Наоборот, сумеречные норные животные обладают более чем скромным мозжечком. Для быстротечной эволюции сенсомоторных корковых центров и мозжечка требовалась невероятно сложная трёхмерная среда, которая ранее позвоночным никогда не встречалась. Следует допустить, что не почва, а иная среда была причиной появления развитой соматической чувствительности. В поисках среды эволюционирования млекопитающих значительную помощь может оказать анализ ещё одной рецепторной системы, которую трудно переоценить — соматической чувствительности. Покровы млекопитающих приобрели удивительный набор механорецепторов различных типов. Они специализированы для восприятия различных видов вибраций, давления, прикосновения, нагревания и охлаждения. Почвенным обитателям столь разнообразный набор кожных рецепторов абсолютно не нужен, тем более что у современных почвенных млекопитающих (голые землекопы) редуцируется даже волосяной покров. Маловероятно, что развитая соматосенсорная система и волосяной покров могли возникнуть у животных, ведущих полуподземный образ жизни.

По-видимому, рептилийные предки млекопитающих, покинув карбоновые завалы, переместились в кроны деревьев (см. рис. III-27, в, г). Вертикальная «миграция» из плохо освещённых растительных буреломов в сумеречный мир крон деревьев выглядит вполне естественной. Этот переход не был радикальным изменением биологии рептилийных предков млекопитающих. Сохранились аналогичная трёхмерная жизненная среда и значение уже хорошо развитого вестибулярного аппарата.
Вполне вероятно, что переход из нижних уровней карбоновых лесных завалов вкрону деревьев происходил неоднократно, но с разными результатами.

Только после появления первичной специализации головного мозга рептилий по обонятельному типу смогли сложиться необходимые предпосылки для формирования «древесной» группы архаичных млекопитающих. В сумеречных кронах деревьев необходим именно тот набор нейросенсорных, аналитических и репродуктивных приобретений, который известен у современных млекопитающих.
Жизнь макросматиков в кронах деревьев практически исключала размножение в гнёздах или дуплах. Для небольших животных с развитым обонянием чужая кладка яиц была и остаётся идеальной и доступной пищей, поэтому доставшееся от рептилийных предков живорождение получило дальнейшее развитие. Было необходимо максимально продлить внутриутробное развитие эмбриона. Это позволяло избежать формирования гнезда и привязки к конкретной территории. Мать перемещалась за пищей вместе с детёнышем, что повышало вероятность их выживания.

Наиболее простой способ увеличения продолжительности внутриутробного развития связан с отказом от питания эмбриона за счёт желтка. Запасы желтка нельзя бесконечно увеличивать в материнской матке. Намного эффективнее использовать простой диффузионный обмен кислорода, воды и метаболитов между стенкой желточного мешка и маткой. По-видимому, этим способом и была решена проблема внутриутробного развития архаичных млекопитающих. Древесные предки млекопитающих были весьма некрупными животными. Это позволяло им при помощи желтковой плаценты доращивать эмбрионы до вполне жизнеспособных размеров. Похожую репродуктивную стратегию используют современные сумчатые. Однако их желтковая плацента позволяет вырастить только небольшой эмбрион, который надо переводить в сумку с молочными железами. Поскольку архаичные млекопитающие были небольшими, необходимость в сумочном доращивании эмбрионов, наверное, отсутствовала. Только с увеличением размеров животных могли возникнуть трудности с выращиванием крупных зародышей. Низшие звери решили этот вопрос при помощи сумки, а высшие млекопитающие — при
помощи плаценты (Jameson, 1988).

Вместе с развитием эффективных репродуктивных стратегий у архаичных млекопитающих наиболее заметным изменениям должна была подвергнуться сенсомоторная система. В кронах деревьев нагрузка на вестибулярный аппарат в несколько раз выше, чем даже в водной трёхмерной среде. Если рыба и совершает ошибочное движение при плавании, то это не приводит к фатальным последствиям. Опора на воду сохраняется в любой ситуации и позволяет исправить моторную ошибку.
Для первичноводных позвоночных требования к сенсомоторной системе намного менее критичны, чем для животных, обитающих на ветвях деревьев и не умеющих летать. Сенсомоторные ошибки на ветвях деревьев могут приводить к фатальным последствиям. Гравитация планеты стала жестоким экзаменатором для рептилий, переместившихся из карбоновых завалов в верхний ярус леса. Она наложила ограничение и на размер тела предков млекопитающих. Большие животные просто не могли бы пережить ошибок становления совершенного вестибулярного аппарата и сенсомоторной системы. Падение крупных животных со значительной высоты почти всегда приводит к гибели или некомпенсируемым повреждениям, поэтому линейный размер предков млекопитающих не мог превышать нескольких десятков сантиметров. Небольшое и подвижное животное должно было быстро приобрести не только совершенный вестибулярный аппарат, но и развитую соматическую чувствительность.

Этот сенсорный комплекс широко представлен в полушариях мозжечка и неокортексе млекопитающих.
Среди рецепторов покровов выделяются рецепторы, адаптированные к различны типам вибрации. Специальные системы с различным временем адаптации возникли для того, чтобы воспринимать колебания. Столь разнообразные и специализированные вибрационные рецепторы кожи были бы абсолютно не нужны, если бы предки позвоночных искали добычу на земле и в подстилке из опавших листьев. Наоборот, ветви и стволы деревьев идеально передают любые колебания. Эти колебания могут содержать информацию о добыче, животном противоположного пола или о приближении опасного хищника.

Такие сигналы надо было дифференцировать с безопасными, но разнообразными колебаниями самих деревьев, поэтому развитие соматической чувствительности древесных рептилий было биологически вполне оправдано. На первом этапе
эволюции рептилийных предков млекопитающих чувствительность механорецепторов покровов могла быть далеко не столь совершенной, как у современных животных. Этот недостаток мог быть компенсирован развитием специализированных чувствительных образований. Однако такие сложные капсулированные рецепторы, как тельца Руффини, Пачини, Мейсснера или концевые колбы Краузе, не могли возникнуть мгновенно для выполнения своих специализированных функций.

По-видимому, на первом этапе развития соматической чувствительности были использованы свободные нервные окончания,
которые хорошо развиты у всех позвоночных. Сложность состоит в том, что свободные нервные окончания обладают ограниченными сенсорными возможностями. Простое увеличение их количества в дерме не смогло бы решить сложных соматосенсорных проблем древесных предков млекопитающих.
Повышение соматической механочувствительности было обеспечено с помощью волос (Spearman, Riley, 1980). Волосы стали своеобразным усилителем механического сигнала. Действительно, проще всего усилить механический сигнал, создав неравноплечий архимедов рычаг. Длинное плечо станет механическим детектором, а короткое — ассоциированным со свободным нервным окончанием рецептором. Понятно, что чувствительность такой системы будет определяться формой, размером и массой рычага, его жёсткостью и чувствительностью нервного окончания.

Если таких рецепторов много, то дифференцированность соматической информации по направлению, силе и частоте будет гарантирована. Вполне возможно, что развитие такой специализированной соматической рецепторной системы привело к возникновению рецепторного волосяного покрова (Hudspeth, 1985). Впоследствии он стал использоваться длясохранения тепла, что замаскировало его первичную функцию. На рецепторное происхождение волос указывает и развитие их мышечного аппарата. Тонкая регуляция теплообмена может осуществляться и другими физиологическими способами, но для динамического изменения чувствительности механорецепторов, оплетающих волосяную сумку, другого способа нет, поэтому в случае опасности волосы многих животных рефлекторно поднимаются дыбом. Так увеличивается механочувствительность волосяного покрова в результате напряжения рецепторного «рычага».

В далёком прошлом напряжение рецепторных волосков предков млекопитающих повышало точность соматосенсорной информации. Это позволяло выбрать адекватную форму поведения в ответ на возникшую ситуацию. Судя по неврологическому обеспечению, этот механизм повышения соматической чувствительности возник ещё на заре эволюции млекопитающих. Он сохранился до настоящего времени как непроизвольная реакция на любое неожиданное возбуждение.

Следовательно, первичная соматическая чувствительность рептилийных предков млекопитающих сложилась на основе свободных нервных окончаний, ассоциированных с рецепторным волосяным покровом. Косвенным свидетельством в пользу этой точки зрения является высокая иннервация стержней волос и волосяных фолликулов. У некоторых животных вокруг основания волоса может группироваться до 20 сенсорных нервных волокон. Эта механорецепторная система обладает самым низким порогом возбуждения и чувствительна к вибрациям частотой около 35 Гц.
Самым примитивным способом обеспечив повышение соматической чувствительности, предки млекопитающих заложили фундамент для долговременной эволюции совершенных капсулированных рецепторов.

Они станут эффективнее свободных нервных и ассоциированных окончаний только спустя миллионы лет. Побочным результатом
становления первичной соматосенсорной системы стал примитивный
волосяной покров. Его дальнейшее развитие уже как термоизоляционного слоя, по-видимому, произошло значительно позднее формирования механосенсорных функций.
Параллельно с периферическим чувствительным аппаратом развивались центральные механизмы анализа соматических и
проприоцептивных сигналов. Именно соматическая чувствительность и моторная система представлены обширными полями в неокортексе лиссэнцефальных млекопитающих (см. рис. III-24). По- видимому, необходимость развития коркового контроля за этими двумя системами стала одной из основных причин эволюции переднего мозга. На это указывает параллельное развитие неостриатума (базальных ядер) млекопитающих. Таких крупных специализированных новообразований в вентральной части переднего мозга у других позвоночных ранее не возникало (Reiner, Brauth, Karten, 1984). Интересно отметить, что эти огромные ядерные центры обеспечивают обработку сенсомоторной и кинестетической информации, которая поступает от других отделов головного мозга. Они избавляют сенсомоторную кору от контроля за
непроизвольными движениями.

Надо подчеркнуть, что параллельно с расширением представительства соматических рецепторов в неокортексе формировались аналогичные связи кожных рецепторов с полушариями мозжечка. Парные полушария мозжечка встречаются только у млекопитающих в связи с развитием феноменальной соматической чувствительности и координации сложных движений. Такое развитие мозжечка не может быть связано ни с какими стандартными условиями в истории позвоночных до млекопитающих.
Даже трёхмерная водная среда, в которой сотни миллионов лет эволюционировали первичноводные позвоночные, не смогла привести их сенсомоторные системы к столь же высокому развитию, как у млекопитающих. «Маммальный» мозжечок триконодонтов сформировался всего за 30– 40 млн лет. Причину его появления следует искать в кронах высоких деревьев, где от эффективности анализа соматических сигналов и координации движений всего тела зависит жизнь любого животного. У млекопитающих вся поверхность мозжечка занята сложноорганизованной корой, которая состоит из специализированных нейронов. Каждая рецепторная поверхность тела представлена строго определённым участком коры полушарий мозжечка. Это привело к тому, что площадь поверхности корковых структур мозжечка млекопитающих возросла в тысячи раз по сравнению с мозжечком рептилий. Собственно говоря, в результате латерального расширения и появились парные полушария мозжечка. Следствием развития межполушарных мозжечковых связей стало формирование моста заднего мозга млекопитающих, которого нет у рептилий и птиц. Причиной формирования моста стали необходимость постоянного оперативного сравнения соматической информации, поступающей от правой и левой половины тела, и моторная коррекция положения тела. Выживание архаичных млекопитающих в кронах деревьев непосредственно зависело от развития аналитического аппарата соматической и сенсомоторной чувствительности. Мозжечок стал своеобразным кинестетическим автоматом, который интегрировал соматические, сенсомоторные и вестибулярные сигналы. Выполняя эти функции, он позволял предкам млекопитающих неосознанно решать проблемы перемещения в сложной трёхмерной среде.

Эволюция архаичных млекопитающих в кронах деревьев позволяет объяснить специфическое развитие других органов чувств и их мозгового представительства. Сложная трёхмерная среда потребовала от упрощённого зрения предков млекопитающих совершенно новых способов оценки окружающего пространства. Надо было не просто увидеть предмет, а предельно точно определить расстояние до него и оценить его свойства. Ошибочная оценка расстояния до ветки в кроне деревьев обычно стоит жизни. Бинокулярное зрение и корковое представительство этой системы в переднем мозге вполне оправданны.

Надо подчеркнуть, что зрение, соматическая чувствительность, проприоцепция и вестибулярный аппарат внутреннего уха являются основными сенсорными входами в вестибулярные ядра ствола мозга. Интеграция этих сигналов позволяет млекопитающим позиционировать своё тело в пространстве и контролировать точность движений.
Вестибулярные ядра млекопитающих являются уникальным образованием.
Они намного более развиты, чем у рептилий и птиц. По-видимому, такая многофункциональная система вестибулярного и кинестетического контроля могла сложиться только в жёстких условиях крон деревьев. В такой среде были все условия для формирования своеобразной слуховой системы млекопитающих. Наружное ухо, которое можно ориентировать на источник звука, могло возникнуть в сложной акустической среде крон деревьев. Современные древесные млекопитающие обладают именно такими наружными слуховыми раковинами. Приобретя перечисленные особенности строения нервной системы в кронах деревьев, млекопитающие неоднократно «спускались» на землю. К неземному существованию первыми вернулись однопроходные (см. рис. 111-27, в-е), затем сумчатые и позднее всех плацентарные млекопитающие (см. рис. III- 27, д-м).

По- видимому, рукокрылые и приматы полностью сформировались в кронах деревьев. Переход приматов к наземномусуществованию стал первым шагом к появлению человека. Важнейшим приобретением мозга млекопитающих, обитавших в
кронах деревьев, стала способность к прогнозированию событий. Умение предугадать событие, результат движения, последствия охоты или внутривидового конфликта отличает и современных млекопитающих.
Способность нервной системы предсказывать результат ещё не совершённого действия отсутствовала у других позвоночных.
Млекопитающие дорого заплатили за такую способность ошибками, совершёнными вдалеке от земли. Вторично спустившись на землю, млекопитающие обладали не только ассоциативными центрами рептилийного типа, но и скромной возможностью оценивать результаты ближайших действий. Это функциональное приобретение млекопитающих основано на переизбытке нейронов и связей, которые сформировались в неокортексе. Только избыточная память и индивидуальный опыт позволили млекопитающим занять доминирующее положение в животном мире.

 

С.В.Савельев. Происхождение мозга. Предисловие
Глава I. Принципы работы и организации мозга
2. Тропизмы и таксисы простейших
3. Функциональная организация нервной системы
4 .Отношение массы мозга и тела.
5. Энергетические расходы нервной систем
6. Потребление мозгом кислорода
7. Гематоэнцефалический барьер.
8. Заряды мембраны нервных клеток
9. Синаптические контакты нервных клеток
10. Типы объединения нервных клеток
11. Нервная система беспозвоночных
12. Нервная система позвоночных
Органы чувств и эффекторные системы
13.Рецепторы и органы чувств
14. Эффекторные системы
Память и забывание
15. Механизмы памяти
16. Морфологические принципы памяти
17. Признаки мышления
18. Биологические проблемы мышления
Глава II. Возникновение нервных клеток и мозга
19.Происхождение нейронов и пронейрональной сети
20. Нервная система с радиальной симметрией
21. Билатеральная нервная система
22. Нервная система членистоногих
23. Нервная система моллюсков
24. Эволюция ганглиозной нервной системы
Нервная система хордовых
25. Теории происхождения хордовых
26. Происхождение нервной системы хордовых
27. Мозг первичноводных позвоночных
28. Возникновение отделов головного мозга
29. Формирование мозга позвоночных
30. Особенности строения нервной системы
31. Проблемы выхода амфибий на сушу
32. Появление конечностей
33. Выход амфибий на сушу
Глава III. Становление мозга амниот
35. Многообразие низших амниот
36. Общий план строения нервной системы рептилий
37. Ассоциативный центр мозга рептилий
38. Условия возникновения мозга рептилий
39. Происхождение неокортекса
40. Адаптивная радиация архаичных рептилий
41. Биологическое разнообразие птиц
42. Морфологические особенности строения птиц
43. Нервная система и органы чувств птиц
44. Условия возникновения мозга птиц
45. Адаптивная радиация птиц
46. Обзор классификации млекопитающих
47. Особенности нервной системы млекопитающих
48. Органы чувств млекопитающих
49. Возникновение мозга млекопитающих
Теория переходных сред
Список литературы