Функциональная организация нервной системы

Нервная система необходима для быстрой интеграции активности различных органов многоклеточного животного. Иначе говоря, объединение нейронов представляет собой систему для эффективного использования сиюминутного индивидуального опыта. Однако персональную опытность нужно как-то получить, причём довольно быстро. Скорость получения информации определяет её ценность. Чем «свежее» и точнее информация, тем адекватнее можно не неё среагировать. Для быстрого получения дифференцированных сведений о внешнем мире нужны специальные чувствительные органы или сенсорные системы. Эти сенсорные органы не могут существовать сами по себе. Следовательно, нервная система необходима для дифференциации и сравнения внешних сигналов от разных источников. Эти источники возникли из неспецифической чувствительности любой живой клетки, но постепенно специализировались.

В основе работы самых разных органов чувств лежат те же три рецепторных принципа, известных для растений и простейших: химическая, физическая и электромагнитная чувствительность мембран. Из этих трёх источников внешних сигналов организм животных создал огромное разнообразие органов чувств. Механочувствительность реализуется в виде слуха, органов боковой линии, грави- или терморецептора. Химическая чувствительность может быть представлена дистантным обонянием или контактным органом вкуса, осморецептором или рецептором парциального давления кислорода. Чувствительность к электромагнитным волнам обусловлена рецепторами внешних или собственных полей, светочувствительностью либо способностью воспринимать магнитные поля планеты и Солнца.

Разнообразие сигналов среды крайне велико, но большинство их быстротечны. Они имеют ценность только непродолжительное время. Следовательно, такие сложные сигналы надо сначала воспринять, а затем быстро использовать полученную информацию. Сложная и быстро работающая рецепторная система нужна только организму с высоким уровнем активности, т. е. метаболизма. Для использования информации её надо сравнивать и реагировать на приоритетные (опасные, половые, пищевые) воздействия. Это можно осуществить в таком устройстве, в

котором были бы представлены все используемые органы чувств. Таким образом, нужен некий центр сравнения получаемой информации. Если даже никакой индивидуальной памяти и опыта не накапливать, то всё равно надо хотя бы сравнивать сигналы различной природы. Затем было бы хорошо выбрать главный раздражитель и отвечать в первую очередь на него. Для этого нужно небольшое скопление тел нервных клеток, которые получают информацию от разных источников.

Различные органы чувств и центр сравнения их информации бесполезны без системы реализации полученных сигналов, поэтому нервная система неотделима от эффекторных структур организма. Организм может ответить на внешний сигнал при помощи сокращения или расслабления мышц различных типов, активизации или подавления выброса биохимических сигналов (ферментов, гормонов). При сравнении сигналов из внешней среды должен присутствовать центр управления эффекторными органами. Вполне допустимо объединение этих функций в одном центре. В предельно упрощённом виде нервная система будет представлять собой три относительно разделённых блока (см. рис. I-4, б). Рецепторный блок должен быть приближен к источникам информационных сигналов. Внешние сенсорные системы должны располагаться на границе тела и внешней среды — в покровах. Блок сравнения, как правило, равноудалён от рецепторов и эффекторов. Поскольку этот блок становится важнейшим интегративным центром, он должен быть механически защищён.

Эта идеализированная схема не имеет ничего общего с реальной нервной системой свободноживущих кишечнополостных. Их диффузная нервная сеть распределена почти равномерно по всему телу. Исключение представляют небольшое скопление клеток у подошвы и окологлоточное нервное кольцо.

Такая функционально минимизированная нервная система позволяет быстро, но довольно неспецифически реагировать на внешнее воздействие. Примером могут быть кишечнополостные. Обычная пресноводная гидра мгновенно сжимается, если качнуть лист, на котором она сидит, прикоснуться к ней щетинкой или вызвать движение воды. Сжавшись в серый комочек, гидра становится менее уязвимой.

В таком виде нервная система эффективна, но крайне неспецифична. Она по функциям отличается от растений только тем, что распределена по всему организму. Это обеспечивает быструю согласованную реакцию всего организма, но ответ не дифференцирован. Он столь же неспецифичен, как и реакция простейших на внешние воздействия. Это сходство долго было

основой для идентификации поведения многоклеточных животных и простейших.

Самое первое и простое преимущество, которое даёт нервная система, — это способность многоклеточного организма реагировать на внешние воздействия со скоростью простейших. При этом ответ, как правило, весьма однотипен. Отсутствие специфичности и контроля результатов реакции только подчёркивает наиболее древнее свойство нервной системы — способность распространять информацию о контакте с внешним миром на весь многоклеточный организм.

Таким образом, нервная система нужна тогда, когда многоклеточному организму необходимо реагировать на внешние воздействия как целому. Реакция может быть как угодно неспецифична, но должна быть генерализована, т. е. охватывать весь организм. Эта способность даёт большое преимущество в биологической эволюции. Примеряя данное эволюционное приобретение на себя, легко понять величие события. Если во время урагана ты будешь гордо стоять во весь рост, то тебя скоро заменит памятник.

Если сгруппироваться, как гидра, есть шанс не планировать ритуальные расходы. В связи с этим неспецифическая, но генерализованная реакция организма стала эпохальным началом быстрых адаптаций нейрогенной природы (см. рис. I-4, а).

Уязвимым звеном однотипных реакций организма на все типы воздействий является их неспецифичность. Она очень хороша, когда ничего нет, но при системе интеграции многоклеточного организма её специализации на различные чувствительные компоненты уже недостаточно. Необходимость эволюционной дифференцировки нейронов на несколько чувствительных типов диктуется самой способностью клеток воспринимать механические, химические и электромагнитные сигналы.

Большинство организмов с нервной системой имеет как минимум три типа органов чувств. Выделение трёх типов чувствительности клеток в специализированные органы приводит к неизбежному повышению направленной чувствительности. В ущерб одним типам клеточной чувствительности усиливается сенсорная модальность. Например, фоторецепторы низших беспозвоночных прекрасно различают свет различной интенсивности, но «проигрывают» в чувствительности органам хеморецепции. Рецепторы высокой чувствительности дают возможность воспринимать различные воздействия на расстоянии. Дистантная чувствительность создаёт новое качество многоклеточного организма — упреждающую адаптацию. Животное успевает подготовиться к изменению окружающей среды заранее, ещё до непосредственного контакта с ней.

Такое упреждение событий (даже в сочетании с неспецифической реакцией организма) стало существенным шагом в быстрых адаптациях многоклеточного организма. Это ещё один мотив для возникновения нервной системы. Она нужна для быстрого ответа многоклеточного организма на внешние воздействия с дифференциацией источника воздействия и упреждением грядущих событий. Организмы, не имеющие нервной системы, о такой адаптивности не могут и мечтать. Однако сразу возникает двойная проблема. Во- первых, сигналы от различных органов чувств должны прийти в одно и то же место, где их можно было бы сравнить, но не просто сравнить, а выбрать самый главный на данный момент. Именно доминирующее возбуждение и будет основным сигналом к действию. Во-вторых, их надо как-то сделать сравнимыми. Одни из них идут от фоторецепторов, другие — от хеморецепторов, а третьи — от рецепторов электромагнитного излучения. Сопоставимость столь разнородных сигналов достигается однотипностью их кодировки. Электрохимический сигнал нейронов, изменяющийся по частоте, амплитуде, модуляции, интенсивности, повторяемости и некоторым другим параметрам, оказался вполне достаточным для сравнимости сигналов из разных органов чувств.

Следующие приобретения для эффективной скоротечной адаптивности вновь связаны с чувствительностью, но уже совершенно другого рода. С одной стороны, это внутренние рецепторы. Активный организм должен знать, чего ему хочется или в чём он остро нуждается. Любому организму обычно хочется поесть и размножиться, а в сложном случае ещё и заранее занять оптимальную (экологическую, социальную и т. п.) нишу для эффективного осуществления двух первых процессов. С другой стороны, необходима информация и о состоянии органов, реализующих ответы на внешние воздействия. Эффекторные органы должны иметь собственную систему рецепторов, которые будут информировать нервный центр о своём состоянии на текущий момент. Нервная система нужна не только для получения дифференциальной информации из внешнего мира, но и для адекватного ответа на неё. Утратив неспецифичность реакций, организм приобретает феноменальную способность приспосабливаться к изменяющейся среде. Чем детальнее информация от органов чувств и точнее адаптирующий ответ, тем приспособленнее оказывается организм.

С такой нервной системой животное недорогой ценой приобретает высокие адаптивные возможности. До тех пор пока нет внешнего стимула, нервная система «молчит» и не требует особых расходов на своё содержание. Как только ситуация меняется, она её воспринимает и  отвечает направленной активностью эффекторных органов. По этим принципам живут многие нематоды, свободноживущие плоские и круглые черви, кишечнополостные, иглокожие и многие другие организмы. Такая организация в стабильной среде вполне достаточна, и к ней, конечно, функционально, стремятся многие обладатели развитой нервной системы.

Однако наша планета — не идеальное место для тех, кто постоянно вынужден кого-то съедать и как-то переносить свой бесценный геном в следующее поколение. Окружающая среда постоянно меняется, и простых адаптивных реакций бывает недостаточно. К счастью, изменения среды подчиняются неким физическим и планетарным законам. Имея возможность сравнивать информацию из внешнего мира во времени, организм получает важное преимущество — опыт предыдущей жизни. Сравнение событий во времени, а не сиюминутных сигналов от различных органов чувств — совершенно новая способность, которая реализуется в нервной системе. Для такого сравнения необходима память (рис. 1–5).

Память невозможна без физического носителя, который занимает некоторое пространство в организме. В нервной системе память определяется числом клеток, вовлекаемых в процесс запоминания. Чтобы запомнить что-то, надо иметь примерно 100 компактно расположенных нейронов. Это достигается уже в нервной системе актиний. Их память краткосрочна, неустойчива, но эффективна. Актиния может использовать память и противостоять элементарному обману. Если собрать актиний в природе и поместить в аквариум, то они расположатся в соответствии со своим исходным, «природным», положением. Следовательно, каждая особь запоминает, в каком направлении было ориентировано её ротовое отверстие. Ещё более сложное поведение наблюдали в экспериментах по обучению актиний. К одним и тем же щупальцам этих животных в течение 5 дней прикладывали кусочки бумаги. Актинии отправляли их в рот, проглатывали, а затем выбрасывали. Через 5 дней они перестали это делать. Однако опыт продолжили, прикладывая бумажки к другим щупальцам. На этот раз животные научились выбрасывать бумажки значительно быстрее, чем в первом случае. Этот навык сохранялся в течение 6-10 дней.

Рис. 1-5. Функциональные блоки сложной нервной системы.

 

В архитектуре схемы учтены разнообразные органы чувств, системы сравнения одномоментной информации и её сопоставления с предыдущим опытом, который хранится в памяти. Появление памяти и рецепторов эффекторной системы является новым этапом эволюции нервной системы. Эффекторный блок включает в себя железы, изменение концентрации нейрогормонов и мышечные ответы. Контроль за состоянием эффекторных органов достигается рецепторами эффекторной системы.

Такие эксперименты демонстрируют принципиальные отличия животных, обладающих памятью, от существ, не имеющих никаких способов сохранять информацию о внешнем мире и о себе. Память обременительна. Её надо энергетически поддерживать, «бесполезно» тратя энергию организма. Память о явлении может пригодиться, а может никогда не понадобиться. Следовательно, роскошная возможность что-либо запомнить — удел весьма «состоятельных» животных. Только сравнение разнородных сигналов с прошлым опытом позволяет сделать адекватный поведенческий выбор. Этими свойствами и обладает нервная система. Она нужна животным с высоким метаболизмом, активно адаптирующимся к внешней среде, использующим различные органы чувств, хранящим и сравнивающим свой индивидуальный опыт. Нервная система позволила увеличить скорость реагирования на внешние раздражители и повысить эффективность адаптивных реакций. Животные с нервной системой смогли обходиться обратимыми физиологическими процессами для адаптации, которые не требовали морфологической перестройки организма. Однако, получив эти преимущества, обладатели нервной системы столкнулись с новыми и неожиданными проблемами.

Энергетическая цена и размеры мозга

Одной из важнейших проблем, с которой сталкивается обладатель нервной системы, — биологическая стоимость этого замечательного органа. Насколько интегративные функции нервной системы окупают затраты на её содержание? Этот вопрос является ключевым в понимании направления и основных путей эволюции нервной системы животных. Абсолютные размеры мозга коррелируют с затратами на его содержание, а относительные — с долей энергетических затрат всего организма. В связи с этим логично рассматривать энергетические затраты организма на нервную систему и её размеры параллельно. По устоявшейся, но необъяснимой традиции под размерами нервной системы понимают массу головного мозга (рис. 1–6). Относительную массу вычисляют как отношение массы мозга к массе тела. Исходя из этих соотношений, определяют уровень обмена и соответствующую долю энергетических затрат на содержание нервной системы. В этих пропорциях, как правило, остаётся неучтённой масса спинного мозга, периферических ганглиев и нервов. Они так же, как и мозг, потребляют кислород и питательные вещества; общая масса спинного мозга и периферической нервной системы может существенно превышать массу головного мозга. Достаточно посмотреть на центральную нервную систему лягушки или змеи (рис. 1–7, а, г). Если добавить к спинному и головному мозгу массу периферической нервной системы, то общее количество нервной ткани будет в несколько раз больше, чем мы привыкли считать.

С.В.Савельев. Происхождение мозга. Предисловие
Глава I. Принципы работы и организации мозга
2. Тропизмы и таксисы простейших
3. Функциональная организация нервной системы
4 .Отношение массы мозга и тела.
5. Энергетические расходы нервной систем
6. Потребление мозгом кислорода
7. Гематоэнцефалический барьер.
8. Заряды мембраны нервных клеток
9. Синаптические контакты нервных клеток
10. Типы объединения нервных клеток
11. Нервная система беспозвоночных
12. Нервная система позвоночных
Органы чувств и эффекторные системы
13.Рецепторы и органы чувств
14. Эффекторные системы
Память и забывание
15. Механизмы памяти
16. Морфологические принципы памяти
17. Признаки мышления
18. Биологические проблемы мышления
Глава II. Возникновение нервных клеток и мозга
19.Происхождение нейронов и пронейрональной сети
20. Нервная система с радиальной симметрией
21. Билатеральная нервная система
22. Нервная система членистоногих
23. Нервная система моллюсков
24. Эволюция ганглиозной нервной системы
Нервная система хордовых
25. Теории происхождения хордовых
26. Происхождение нервной системы хордовых
27. Мозг первичноводных позвоночных
28. Возникновение отделов головного мозга
29. Формирование мозга позвоночных
30. Особенности строения нервной системы
31. Проблемы выхода амфибий на сушу
32. Появление конечностей
33. Выход амфибий на сушу
Глава III. Становление мозга амниот
35. Многообразие низших амниот
36. Общий план строения нервной системы рептилий
37. Ассоциативный центр мозга рептилий
38. Условия возникновения мозга рептилий
39. Происхождение неокортекса
40. Адаптивная радиация архаичных рептилий
41. Биологическое разнообразие птиц
42. Морфологические особенности строения птиц
43. Нервная система и органы чувств птиц
44. Условия возникновения мозга птиц
45. Адаптивная радиация птиц
46. Обзор классификации млекопитающих
47. Особенности нервной системы млекопитающих
48. Органы чувств млекопитающих
49. Возникновение мозга млекопитающих
Теория переходных сред
Список литературы