11. Нервная система беспозвоночных

У беспозвоночных диффузно-ганглиозная нервная система с выраженными головными и туловищными ганглиями. Туловищные ганглии обеспечивают местный контроль над вегетативными функциями и моторной активностью. Головные ганглии содержат скопления нейронов, отвечающих за осязание, зрение, обоняние, вкус, слух, электрорецепцию и эндогенную рецепцию (рис I-15). Эти специализированные области интегрированы между собой и имеют своеобразную надстройку — комплекс вставочных ассоциативных нейронов. Нейроны могут располагаться как в виде дополнительных ядер в нейропиле головных ганглиев, так и в ассоциативных структурах — грибовидных телах.
Грибовидные тела не имеют прямых связей с рецепторами конкретных органов чувств. Они являются своеобразной надстройкой над специализированными центрами, что отражено и в их строении.

Грибовидным телам свойственна не нейропильная или ядерная, а стратифицированная структура. Клетки расположены слоями, как бы в несколько этажей. Этот тип организации нейронов позволяет оптимально обрабатывать поступающую информацию и является структурным признаком сложных анализаторных или ассоциативных функций. Если в ганглиях или грибовидных телах принято решение и запущенаповеденческая программа, то она реализуется через систему эффекторных центров — двигательных или нейрогормональных клеток. В самой сложной нервной системе насекомых эффекторные центры и нейрогормональные клетки тоже выделены в отдельные структуры головных ганглиев (Pierce, Mangel, 1987). По принципам специализации мозга позвоночные и беспозвоночные очень похожи (см. рис. I-15).

Разница сводится к размерам мозга и способам решения поведенческих задач.
Оценивая результаты морфологической эволюции нервной системы, необходимо отметить, что наибольшего развития она достигла у беспозвоночных животных. Беспозвоночные подтвердили это преимущество тем, что стали самой разнообразной и многочисленной группой животных на планете. Только насекомых насчитывается более 1 млн видов, что делает их безусловными лидерами нейробиологической эволюции. Их нервная система очень небольшого размера, обладает развитыми сенсорными входами и имеет практически полный набор программ поведения, находящийся под контролем генетических и нейрогормональных процессов. Компактность, экономичность и детерминированность делают нервную систему беспозвоночных совершенным инструментом для решения стандартных задач.

Учитывая однотипность и предопределённость реакций нервной системы, легко понять согласованность миграций, половую и суточную активность высших беспозвоночных. Совершенство нервной системы позволило беспозвоночным освоить огромные пространства и быть самой распространённой группой животных на планете. Однако существует и обратная сторона медали. За компактность, экономичность и эффективность нервной системы беспозвоночным пришлось заплатить индивидуализацией поведения. Беспозвоночные практически не обладают внутривидовой изменчивостью в строении нервной системы и как следствие индивидуальными особенностями поведения. Они совершенны в предусмотренных природой случаях и беспомощны в нестандартной ситуации.
Из высших беспозвоночных получились бы идеальные солдаты, но из них не вышел бы ни один генерал. Там, где начинаются индивидуальность и творчество, царят морфологическая изменчивость, структурная избыточность и случайность.

 

С.В.Савельев. Происхождение мозга. Предисловие
Глава I. Принципы работы и организации мозга
2. Тропизмы и таксисы простейших
3. Функциональная организация нервной системы
4 .Отношение массы мозга и тела.
5. Энергетические расходы нервной систем
6. Потребление мозгом кислорода
7. Гематоэнцефалический барьер.
8. Заряды мембраны нервных клеток
9. Синаптические контакты нервных клеток
10. Типы объединения нервных клеток
11. Нервная система беспозвоночных
12. Нервная система позвоночных
Органы чувств и эффекторные системы
13.Рецепторы и органы чувств
14. Эффекторные системы
Память и забывание
15. Механизмы памяти
16. Морфологические принципы памяти
17. Признаки мышления
18. Биологические проблемы мышления
Глава II. Возникновение нервных клеток и мозга
19.Происхождение нейронов и пронейрональной сети
20. Нервная система с радиальной симметрией
21. Билатеральная нервная система
22. Нервная система членистоногих
23. Нервная система моллюсков
24. Эволюция ганглиозной нервной системы
Нервная система хордовых
25. Теории происхождения хордовых
26. Происхождение нервной системы хордовых
27. Мозг первичноводных позвоночных
28. Возникновение отделов головного мозга
29. Формирование мозга позвоночных
30. Особенности строения нервной системы
31. Проблемы выхода амфибий на сушу
32. Появление конечностей
33. Выход амфибий на сушу
Глава III. Становление мозга амниот
35. Многообразие низших амниот
36. Общий план строения нервной системы рептилий
37. Ассоциативный центр мозга рептилий
38. Условия возникновения мозга рептилий
39. Происхождение неокортекса
40. Адаптивная радиация архаичных рептилий
41. Биологическое разнообразие птиц
42. Морфологические особенности строения птиц
43. Нервная система и органы чувств птиц
44. Условия возникновения мозга птиц
45. Адаптивная радиация птиц
46. Обзор классификации млекопитающих
47. Особенности нервной системы млекопитающих
48. Органы чувств млекопитающих
49. Возникновение мозга млекопитающих
Теория переходных сред
Список литературы