35. Многообразие низших амниот

Объединение амниот в общую систематическую группу выглядит довольно искусственно, хотя полностью исключать их монофилическое происхождение не стоит. Наиболее вероятно предположение о полифилическом возникновении амниот от различных групп амфибий.
Если попытаться выделить из них наиболее древнюю группу, то невольно придётся проводить аналогии с современными рептилиями. Однако название «рептилии» очень трудно применить даже к экзотической группе современных «рептилий». В неё входят крокодилы, черепахи, змеи, ящерицы, хамелеоны и гаттерии.

Состав группы столь глубоко различается как по строению, так и по происхождению, что их систематическое объединение весьма условно. Объективно их можно было бы назвать животными, которые не являются амфибиями, птицами и млекопитающими. Тем не менее, поскольку название закреплено в систематике и истории науки, их придётся называть рептилиями или пресмыкающимися, понимая в^ абстрактность этих названий.
При первом взгляде на современных пресмыкающихся заметно, что они отличаются от амфибий структурой кожи. Кожа всегда образует твёрдые роговые чешуи, иногда с окостенениями внутри. Обычно конечностей две пары, хотя встречаются виды с одной передней парой или с одной зачаточной парой конечностей. У змей и безногих ящериц ног нет вовсе.
Эта сводная группа холоднокровных амниот, традиционно называемых рептилиями, освоила огромные территории благодаря своей независимости от воды в период размножения, эффективному строению скелетно- мышечной системы, сердца, лёгких, органов чувств и мозга (Radinsky,1987).

Современные рептилии являются скромной тенью разнообразия этой группы в прошлом (рис. III-3).
Первоначально это были относительно небольшие животные — от нескольких десятков сантиметров до метра длиной. К ним относят наиболее архаичных анапсид типа Hylonomus (покровный череп анапсид не имеет отверстий, а кости плотно сращены друг с другом). Наиболее примитивные рептилии (капториноморфы) просуществовали относительно недолго и исчезли в конце юрского периода. За относительно небольшой период они эволюционировали в довольно крупных парейазавров. К началу верхней перми растительноядные парейазавры уже достигали 3 м и весили около тонны. Примитивные рептилии исчезли, но от этой группы
сохранился интересный эволюционный след, представителями которого являются черепахи. Их панцирь оказался самым эффективным приспособлением для выживания и процветания на протяжении почти 250 млн лет. Возникнув в эпоху котилозавров, они освоили сушу и вторично завоевали водную среду. Мозг черепах является своеобразной посылкой из эпохи архаичных амниот.

Надо отметить, что мозг черепах внешне мало отличается от организации мозга крокодилов, ящериц и змей, но его цитоархитектоника, по-видимому, не подверглась серьёзным морфологическим перестройкам. Совершенно иные события развивались в группе синапсид (череп синапсид имел одно отверстие, которое расположено между заглазничной и чешуйчатой костями) и эвриапсид  череп с одним отверстием, расположенным выше заглазничной и чешуйчатой костей). Синапсиды появились в позднем карбоне почти одновременно с котилозаврами. Синапсиды были относительно небольшими животными типа Protoclepsydrops и Archaeothyris, которых находят в стволах растений. Среди мелких синапсид уже в нижней перми появляются крупные хищные (Dimetrodon, Ophiacodon) и растительноядные (Edaphosaurus) пеликозавры. По-видимому, хищные пеликозавры — сфенакодонты дали начало терапсидам, а последних сменили млекопитающие. Однако потомков архаичных синапсид до наших дней не сохранилось.

Примерно такая же судьба постигла и эвриапсид. В эту группу обычно включают рептилий, населявших водную среду: ихтиозавров, плезиозавров, нотозавров и плакодонтов. Их история также начиналась с относительно небольших животных, едва ли достигавших метрового размера. Наиболее известен Claudiosaurus, которого позиционируют как возможного представителя предковой группы для нотозавров и
плезиозавров. Архаичные эвриапсиды были небольшими полуводными существами, по-видимому, часто возвращавшимися на сушу. К началу юры они стали гигантскими водными хищниками, достигавшими 15 м (Elasmosaurus). Среди эвриапсид особое положение занимают ихтиозавры.
Их длина превышала 12 м, они были полностью водными существами и явно живородящими. Несмотря на свою гиперспециализацию и эффективность размножения, ихтиозавры исчезли, как и все эвриапсиды.
Среди архаичных амниот выделяется обширная группа диапсид (диапсиды имеют в черепе два височных отверстия с каждой стороны выше и ниже чешуйчатой и заглазничной костей). К диапсидам относят архозавров и лепидозавров, представители которых сохранились до наших дней. К архозаврам относят летающих ящеров, динозавров и крокодилов, а к лепидозаврам — мозазавров, ящериц и змей. Диапсиды появились в позднем карбоне и к началу юры стали доминирующей группой. Начало эволюции диапсид, как и других архаичных амниот, было более чем скромным. Наиболее древний представитель этой группы Petrolacosaurus был похож на ящерицу и явно не превышал в длину полуметра.

Однако диапсиды оказались весьма удачливой группой, которая дала массу ветвей рептилий и бесчисленное количество вариантов морфологического строения. Останавливаться на изменчивости ящеротазовых и птицетазовых динозавров не имеет смысла, поскольку им посвящена обширная научная и популярная литература. Следует остановиться только на тех особенностях, которые могут пролить свет на пути эволюции нервной системы рептилий.

Именно среди динозавров встречались наиболее крупные наземные позвоночные. При массе тела 18 т мозг ящеротазового динозавра Diplodocus весил всего 90-160 г. Ещё более крупный брахиозавр (Brachiosaurus) длиной более 22 м и массой около 40 т имел мозг около 200 г. Следовательно, у самых крупных животных отношение массы головного мозга к массе тела составляло примерно 1:150 000-1:200 000. Не
исключено, что такая пропорция массы тела и мозга сохранялась и у более крупных форм, которые известны только по фрагментам скелетов или следам (Ultrasaurus, Breviparopus, Seismosaurus). При размерах тела более 40 м и массе около 100 т эти животные обладали головным мозгом не больше мозга современной крупной собаки.

Основные физиологические проблемы этих гигантов решались не головным, а спинным мозгом, на уровне автономной нервной системы.
Приблизительные оценки массы спинного мозга показывают, что его размеры и масса намного превышали аналогичные показатели головного мозга. По-видимому, у крупных (более 5 м) рептилий головной мозг не превышает 1/10-1/15 массы спинного мозга. Примерно треть массы спинного мозга приходится на плечевое и поясничное утолщения, которые хорошо развиты у современных рептилий (рис. 111-4). Вполне допустимопредположить, что у большинства динозавров спинные и поясничные утолщения имели терминальные желудочки, как у современных птиц и медведей. Это позволяло эффективнее осуществлять метаболизм в наиболее функционально активных участках спинного мозга.

Однако спинной мозг является исполнительной частью нервной системы. Он только осуществляет набор автономных программ, но не принимает решения. Вся поведенческая активность контролируется головным мозгом.
У архаичных рептилий он имел невероятно скромные размеры, но позволял им находить пищу, размножаться и конкурировать с другими видами. Проводя глобальные аналогии, можно сказать, что относительная масса мозга динозавров была намного меньше, чем у современных насекомых. То же заключение можно сделать и в отношении амфибий.

Однако они не смогли достигнуть уровня расцвета рептилий. Это позволяет сделать вывод о принципиальном эволюционном изменении в конструкции мозга при появлении древних амниот.
Таким образом, разнообразие форм исчезнувших и современных рептилий практически не имеет аналогов в истории позвоночных. На этом фоне однотипность строения их мозга выглядит парадоксально. Принципы его конструкции практически не изменялись как у архаичных, так и у современных рептилий. Анатомические различия внешнего строения мозга в основном связаны с количественными, а не качественными изменениями.
В соответствии с адаптацией к конкретной среде обитания может преобладать тот или другой отдел мозга, но принципы его строения сохраняются неизменными, а количественное (макроанатомическое) представительство анализаторов или моторных центров варьирует в широких пределах. Эти изменения меньше отражаются на внешней форме мозга, чем у первичноводных позвоночных (см. рис. III-4). Стабильность конструкции головного мозга рептилий говорит о ряде принципиальных приобретений, которые оказались настолько универсальны, что не нуждались в качественной перестройке миллионы лет. Новые по сравнению с амфибиями свойства мозга рептилий дали этой группе значительные эволюционные (поведенческие) преимущества, позволившие освоить всю сушу, воздушную и водную среду.

С.В.Савельев. Происхождение мозга. Предисловие
Глава I. Принципы работы и организации мозга
2. Тропизмы и таксисы простейших
3. Функциональная организация нервной системы
4 .Отношение массы мозга и тела.
5. Энергетические расходы нервной систем
6. Потребление мозгом кислорода
7. Гематоэнцефалический барьер.
8. Заряды мембраны нервных клеток
9. Синаптические контакты нервных клеток
10. Типы объединения нервных клеток
11. Нервная система беспозвоночных
12. Нервная система позвоночных
Органы чувств и эффекторные системы
13.Рецепторы и органы чувств
14. Эффекторные системы
Память и забывание
15. Механизмы памяти
16. Морфологические принципы памяти
17. Признаки мышления
18. Биологические проблемы мышления
Глава II. Возникновение нервных клеток и мозга
19.Происхождение нейронов и пронейрональной сети
20. Нервная система с радиальной симметрией
21. Билатеральная нервная система
22. Нервная система членистоногих
23. Нервная система моллюсков
24. Эволюция ганглиозной нервной системы
Нервная система хордовых
25. Теории происхождения хордовых
26. Происхождение нервной системы хордовых
27. Мозг первичноводных позвоночных
28. Возникновение отделов головного мозга
29. Формирование мозга позвоночных
30. Особенности строения нервной системы
31. Проблемы выхода амфибий на сушу
32. Появление конечностей
33. Выход амфибий на сушу
Глава III. Становление мозга амниот
35. Многообразие низших амниот
36. Общий план строения нервной системы рептилий
37. Ассоциативный центр мозга рептилий
38. Условия возникновения мозга рептилий
39. Происхождение неокортекса
40. Адаптивная радиация архаичных рептилий
41. Биологическое разнообразие птиц
42. Морфологические особенности строения птиц
43. Нервная система и органы чувств птиц
44. Условия возникновения мозга птиц
45. Адаптивная радиация птиц
46. Обзор классификации млекопитающих
47. Особенности нервной системы млекопитающих
48. Органы чувств млекопитающих
49. Возникновение мозга млекопитающих
Теория переходных сред
Список литературы